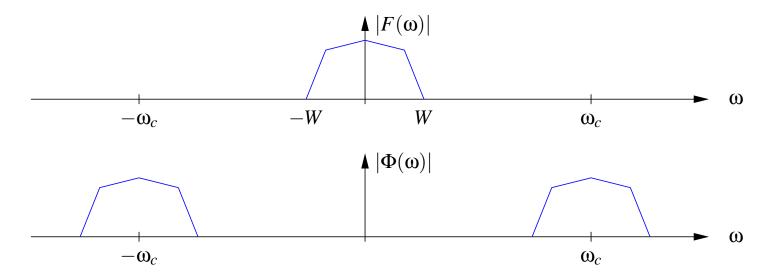
4 Amplitude Modulation (AM)

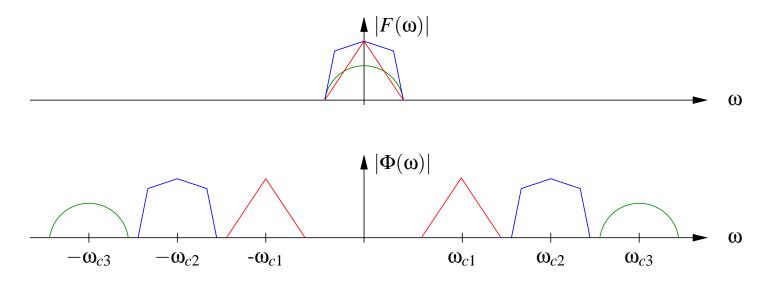
4.1	Introdu	ntroduction													
4.2	Double-Sideband Suppressed Carrier AM (DSB-SC)														
	4.2.1	Modulation	6												
	4.2.2	Demodulation	8												
Pilot Carrier															
	Phase Locked Loop	14													
4.3	Double-Sideband Large Carrier AM														
	4.3.1	Modulation	15												
	4.3.2	Carrier and Sideband Power in AM	18												
	4.3.3	Demodulation	19												
4.4	Quadra	ature AM (IQ) \ldots													
4.5	Single-	Sideband AM (SSB)	22												
	4.5.1	Modulation	23												
	4.5.2	Demodulation	26												
4.6	Vestigi	al-Sideband AM (VSB)	29												
	4.6.1	Video Transmission in Commercial TV Systems	31												

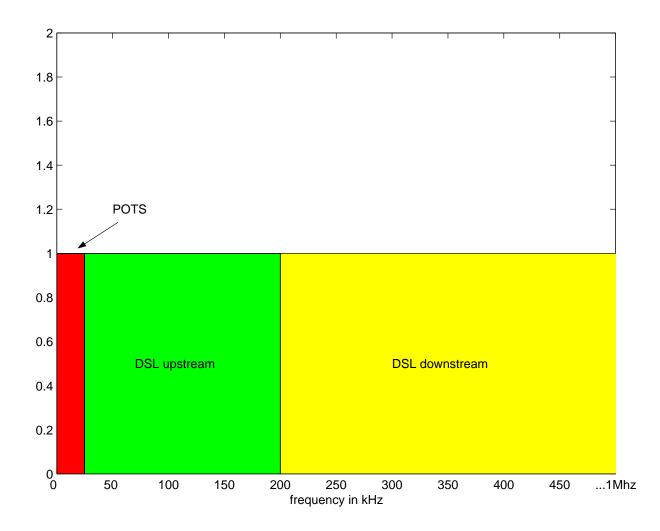
4.7	Summary .									•																						32	2
-----	-----------	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---


4.1 Introduction

Modulation: Process by which a property or a parameter of a signal is varied in proportion to a second signal.

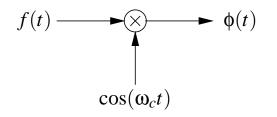
Amplitude Modulation: The amplitude of a sinusoidal signal with fixed frequency and phase is varied in proportion to a given signal.


Purpose:


- Adaptation of the information signal to the transmission channel
- Shift of the information signal to an assigned frequency band

• Efficient antenna design: size is at least $1/4^{th}$ of signal wavelength \Rightarrow antennas for lowpass signals would be too large (f = 3 kHz, $\lambda = 100,000 \text{ m}$).

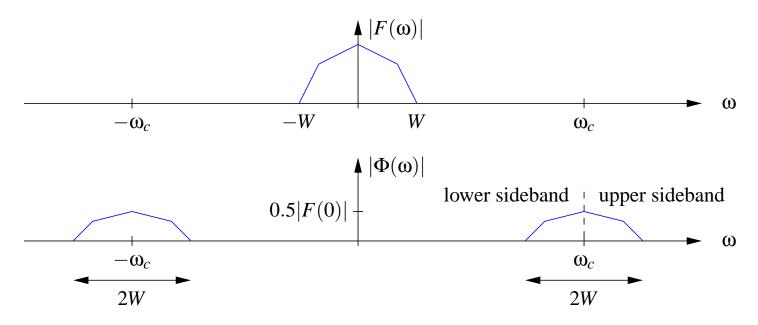
• Simultaneous transmission of several information signals (e.g. radio broadcasting)



4.2 Double-Sideband Suppressed Carrier AM (DSB-SC)

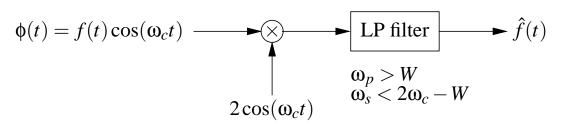
4.2.1 Modulation

Generation of DSB-SC modulated signal:



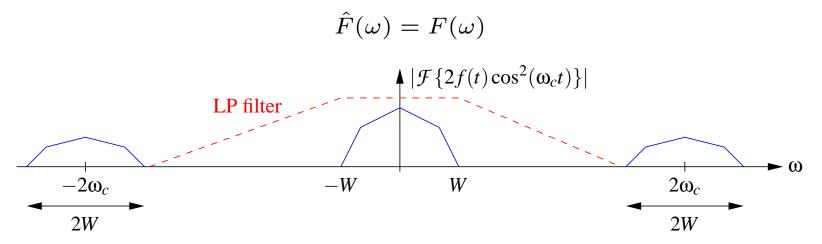
 $\phi(t)$: modulated transmit signal f(t): modulating signal, real valued $\cos(\omega_c t)$: carrier signal, ω_c : carrier frequency in rad/sec d signal:

 $\phi(t) = f(t)\cos(\omega_c t)$


Spectrum of DSB-SC modulated signal:

$$\phi(t) = f(t)\cos(\omega_c t) \quad \longrightarrow \quad \Phi(\omega) = \frac{1}{2}F(\omega - \omega_c) + \frac{1}{2}F(\omega + \omega_c)$$

- Carrier frequency has to be larger than twice the bandwidth $\omega \geq 2W$.
- Bandwidth of the modulated signal $\phi(t)$ is twice as large as the bandwidth of the modulating signal f(t).
- No separate carrier is present in $\phi(t)$.
- Upper sideband: spectral content for positive frequencies above ω_c . Lower sideband: spectral content for positive frequencies below ω_c .
- Information in upper and lower sideband are redundant since $\Phi(\omega_c + \omega) = \Phi^*(\omega_c \omega)$, or equivalently: $|\Phi(\omega_c + \omega)| = |\Phi(\omega_c - \omega)|$ and $\angle \Phi(\omega_c + \omega) = -\angle \Phi(\omega_c - \omega)$


4.2.2 Demodulation

Before lowpass filtering:

$$\phi(t) 2\cos(\omega_c t) = 2f(t)\cos^2(\omega_c t) = f(t) \left(1 + \cos(2\omega_c t)\right)$$
$$\mathcal{F}\{\phi(t) 2\cos(\omega_c t)\} = F(\omega) + \frac{1}{2}F(\omega - 2\omega_c) + \frac{1}{2}F(\omega + 2\omega_c)$$

After lowpass filtering:

The oscillators at the transmitter and receiver have to be synchronized, i.e. the carrier frequency ω_c as well as the phase must be identical (coherent demodulation).

Influence of Frequency and Phase Offset:

The oscillator at the receiver has a constant phase offset of θ_0 as well as a slightly different carrier frequency of $\omega_c + \Delta \omega$ when compared to the one at the transmitter.

Before lowpass filtering:

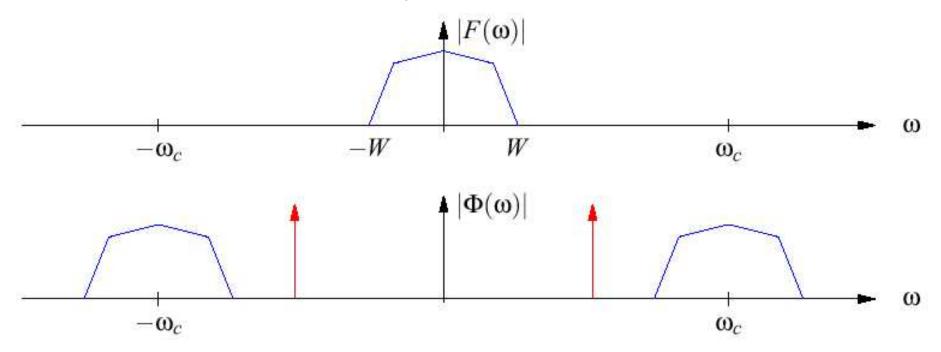
$$\phi(t) 2\cos((\omega_c + \Delta\omega)t + \theta_0) = 2f(t)\cos(\omega_c t)\cos((\omega_c + \Delta\omega)t + \theta_0)$$
$$= f(t)\cos((2\omega_c + \Delta\omega)t + \theta_0) + f(t)\cos(\Delta\omega t + \theta_0)$$

After lowpass filtering:

$$\hat{f}(t) = f(t)\cos(\Delta\omega t + \theta_0)$$
$$= \frac{1}{2}f(t)\exp(j\Delta\omega t)\exp(j\theta) + \frac{1}{2}f(t)\exp(-j\Delta\omega t)\exp(-j\theta)$$
$$\hat{F}(\omega) = \frac{1}{2}\exp(j\theta)F(\omega - \Delta\omega) + \frac{1}{2}\exp(-j\theta)F(\omega + \Delta\omega)$$

Phase error only (i.e. $\Delta \omega = 0$): $\hat{f}(t) = f(t) \cos(\theta_0) \qquad \longrightarrow \qquad \hat{F}(\omega) = F(\omega) \cos(\theta_0)$

 \Rightarrow The recovered signal is scaled by a constant. For $\theta_0 = \pm 90^\circ$ we have $\hat{f}(t) = 0$.

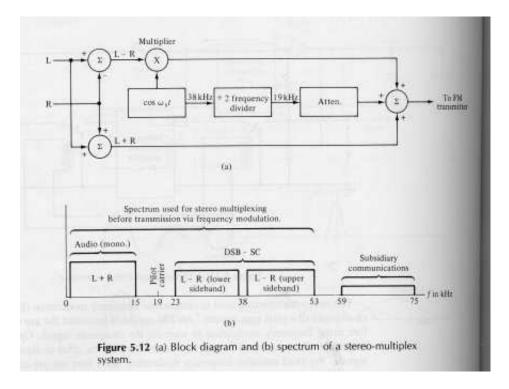

Frequency error only (i.e. $\theta_0 = 0$):

$$\hat{f}(t) = f(t)\cos(\Delta\omega t)$$
 \longrightarrow $\hat{F}(\omega) = \frac{1}{2}F(\omega - \Delta\omega) + \frac{1}{2}F(\omega + \Delta\omega)$

 \Rightarrow The recovered signal is still modulated by a cosine signal of low frequency $\Delta \omega$.

Pilot Carrier

• send a sinusoidal tone whose frequency and phase is proportional to ω_c

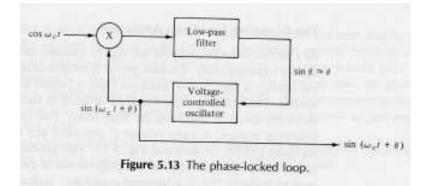


- sent outside the passband of the modulate signal
- Receiver detects the tone, translates to correct frequency(doubling) and demodulates

Example - Commercial Stereo FM Stations

Transmitter

- need to transmit left(L) and right(R) as well as (L+R) for monophonic
- (L+R) occupies 0 15kHz
- so does (L-R), so shift up using DSB-SC with $\omega_c=38kHz$
- place pilot tone at 19kHz


Receiver

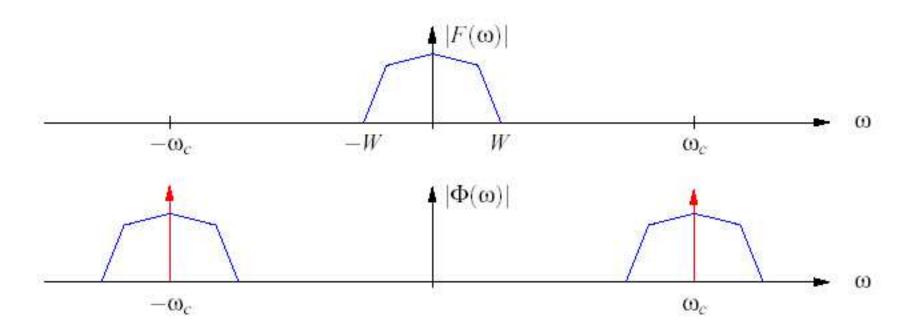
- narrow bandpass filter at 19kHz and then double to 38kHz
- after demodulation using pilot tone, we have

Left channel =
$$(L + R) + (L - R) = 2L$$

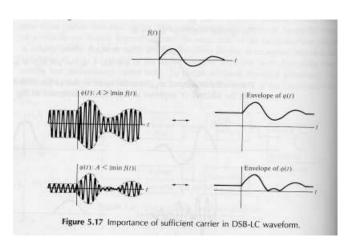
Right channel = $(L + R) - (L - R) = 2R$

Phase Locked Loop(PLL)

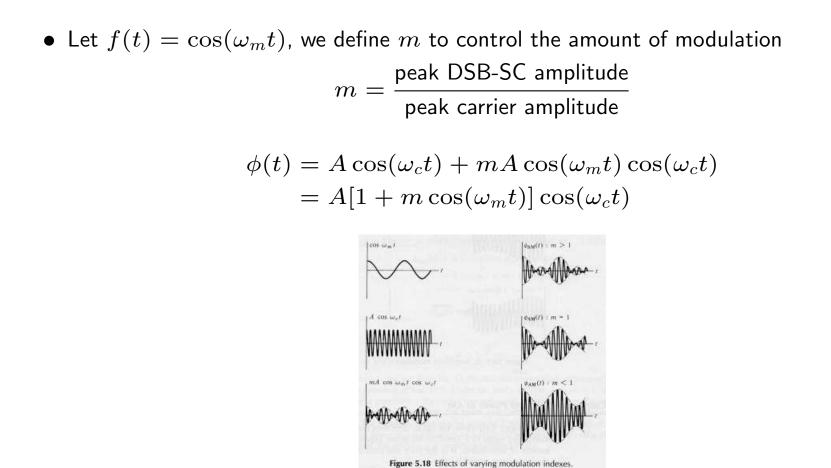
- Pilot Tone Problem -BP filters drift in tuning, bad at rejecting noise
- Solution: Phase Locked Loop(PLL)


- Operation when Voltage Controlled Oscillator(VCO) frequency(ω_{VCO}) is close to ω_c
 - low-frequency component of output is proportional to magnitude and sign of phase difference
 - this voltage adjusts ω_{VCO} to keep phase difference a minimum
- Bandwidth of PLL determined by LPF
 - Small BW \Rightarrow good noise rejection but receiver may never lock
 - Large BW \Rightarrow good lock but bad noise rejection

4.3 Double-Sideband Large Carrier AM


4.3.1 Modulation

- Reduces complexity of receiver
- Since this type of AM is used in commercial broadcast stations, usually termed AM
- Similar to DSB-SC, except that we incorporate the carrier
 - carrier must be larger than the rest of the signal
 - ruins low-frequency response of the system, so must not require frequency response down to 0.


$$\phi_{AM} = f(t)\cos(\omega_c t) + A\cos(\omega_c t)$$
$$\Phi_{AM}(\omega) = \frac{1}{2}F(\omega + \omega_c) + \frac{1}{2}F(\omega - \omega_c) + \pi A\delta(\omega + \omega_c) + \pi A\delta(\omega - \omega_c)$$

• if A is large enough signal recovery is done with envelope detection

 $[A + f(t)] \ge 0 \quad \text{for all } t$

• percentage of modulation for DSB-LC signal with sinusoidal modulation

$$\% \mathsf{mod} = \frac{A(1+m) - A(1-m)}{A(1+m) + A(1-m)} \times 100\% = m \times 100\%$$

- $\bullet\,$ we call m the modulation index
- $\bullet\,$ in order to detect the signal with no distortion we require $m\leq 1$

4.3.2 Carrier and Sideband Power in AM

• carrier provides no information so it is just wasted power

• for an AM signal
$$\phi_{AM}(t) = A \cos(\omega_c t) + f(t) \cos(\omega_c t)$$
 the power is

$$\overline{\phi_{AM}^2(t)} = A^2 \overline{\cos^2(\omega_c t)} + \overline{f^2(t) \cos^2(\omega_c t)} + 2A \overline{f(t) \cos^2(\omega_c t)}$$

$$= A^2 \overline{\cos^2(\omega_c t)} + \overline{f^2(t) \cos^2(\omega_c t)}$$

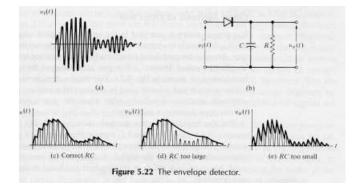
$$= A^2/2 + \overline{f^2(t)}/2$$

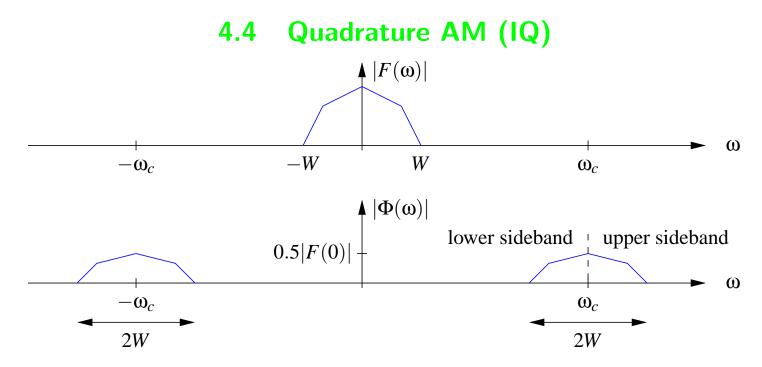
• so we can express the total power as,

$$P_t = P_c + P_s = \frac{1}{2}A^2 + \frac{1}{2}\overline{f^2(t)}$$

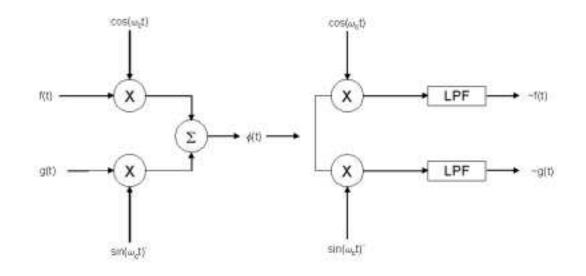
so that the fraction of the total power contained in the sidebands is

$$\mu = \frac{P_s}{P_t} = \frac{\overline{f^2(t)}}{A^2 + \overline{f^2(t)}}$$


• so when $f(t) = \cos(\omega_m t)$ we get


$$\overline{\phi_{AM}^2(t)} = \frac{1}{2}A^2 + (\frac{1}{2})(\frac{1}{2})m^2A^2$$
$$\mu = \frac{m^2}{2+m^2}$$

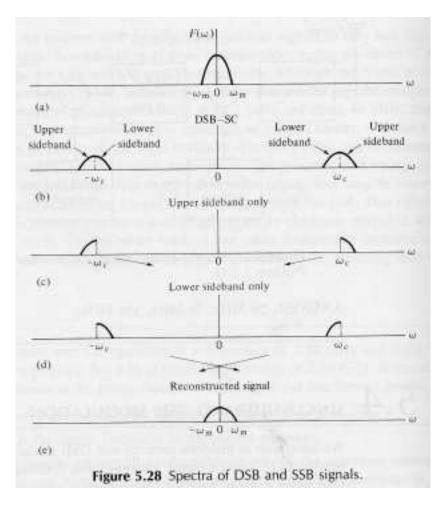
• so for best case, i.e., m=1, 67% of the total power is wasted with the carrier


4.3.3 Demodulation

- the price we pay for wasted power is a tradeoff for simple receiver design
- receiver is simply an envelope detector

- for real signal f(t), $F(\omega) = F^*(-\omega)$
- using this symmetry we can transmit two signals that form a complex signal with same bandwidth
- we use two sinusoidal carriers, each exactly 90° out of phase remember, $e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$
- transmitted over the same frequency band,

$$\phi(t) = f(t)\cos(\omega_c t) + g(t)\sin(\omega_c t)$$

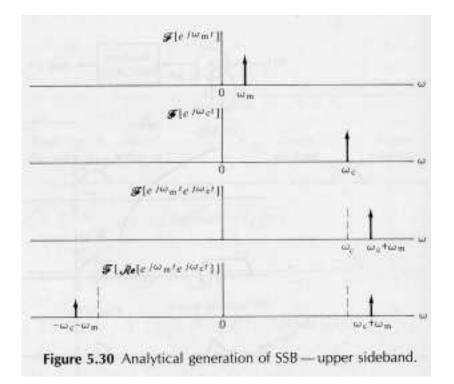

$$\phi(t) \cdot \cos(\omega_c t) = f(t)\cos^2(\omega_c t) + g(t)\sin(\omega_c t)\cos(\omega_c t)$$

$$= \frac{1}{2}f(t) + \frac{1}{2}f(t)\cos(2\omega_c t) + \frac{1}{2}f(t)\sin(2\omega_c t)$$

$$\phi(t) \cdot \sin(\omega_c t) = f(t)\cos(\omega_c t)\sin(\omega_c t) + g(t)\sin^2(\omega_c t)$$

$$= \frac{1}{2}f(t)\sin(2\omega_c t) + \frac{1}{2}g(t) - \frac{1}{2}\cos(2\omega_c t)$$

4.5 Single-Sideband AM (SSB)



- remember for real $f(t),\,F(-\omega)=F^*(\omega)$
- a single sideband contains entire information of the signal
- let's just transmit the upper/lower sideband.

4.5.1 Modulation

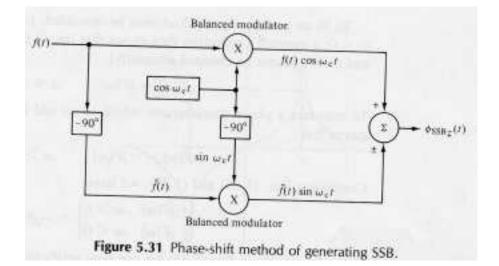
- one way is to generate DSB signal, and then suppress one sideband with filtering
- hard to do in practice, can't get ideal filters
- assume no low-frequency information \Rightarrow no components around ω_c
- use heterodyning(frequency shifting), only need to design on sideband filter
- another way is the use of phasing
- assume a complex, single-frequency signal, $f(t)=e^{j\omega_m t}$ with carrier signal $f(t)=e^{j\omega_c t}$
- multiplying we get $\phi(t)=f(t)e^{j\omega_{c}t}=e^{j\omega_{m}t}e^{j\omega_{c}t}$
- using the frequency-translation property of the Fourier Transform, our spectrum becomes

$$\Phi(\omega) = 2\pi\delta(\omega - (\omega_c + \omega_m))$$

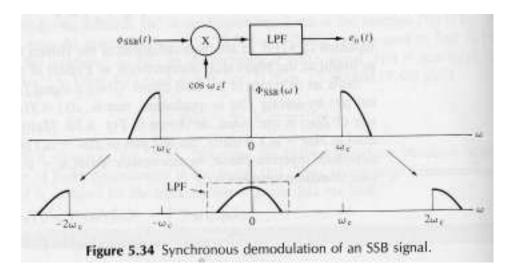
• to make the signal
$$\phi(t)$$
 realizable, we take the $\mathbb{R}\{\phi(t)\}$
 $\mathbb{R}\{\phi(t)\} = \mathbb{R}\{e^{j\omega_m t}\}\mathbb{R}\{e^{j\omega_c t}\} - \mathbb{I}\{e^{j\omega_m t}\}\mathbb{I}\{e^{j\omega_c t}\}$
 $= \cos(\omega_m t)\cos(\omega_c t) - \sin(\omega_m t)\sin(\omega_c t)$

• So the upper side band is

$$\phi_{SSB_+}(t) = \cos(\omega_m t) \cos(\omega_c t) - \sin(\omega_m t) \sin(\omega_c t)$$


• likewise the lower sideband is

$$\phi_{SSB_{-}}(t) = \cos(\omega_m t)\cos(\omega_c t) + \sin(\omega_m t)\sin(\omega_c t)$$


• in general we write,

$$\phi_{SSB_{\mp}}(t) = f(t)\cos(\omega_c t) \pm \hat{f}(t)\sin(\omega_c t)$$

where $\hat{f}(t)$ is f(t) shifted by 90°

4.5.2 Demodulation

Synchronous detection, analogous to DSB-SC

Influence of Frequency and Phase Offset:

The oscillator at the receiver has a constant phase offset of θ as well as a slightly different carrier frequency offset of $\Delta \omega$ giving

$$\phi_d(t) = \cos[(\omega_c + \Delta \omega)t + \theta]$$

Before lowpass filtering:

$$\phi_{SSB_{\mp}}(t)\phi_{d}(t) = [f(t)\cos(\omega_{c}t) \pm \hat{f}(t)\sin(\omega_{c}t)]\cos[(\omega_{c} + \Delta\omega)t + \theta]$$
$$= \frac{1}{2}f(t)\{\cos[(\Delta\omega)t + \theta] + \cos[(2\omega_{c} + \Delta\omega)t + \theta]\}$$
$$= \pm \frac{1}{2}\hat{f}(t)\{\sin[(\Delta\omega)t + \theta] - \sin[(2\omega_{c} + \Delta\omega)t + \theta]\}$$

After lowpass filtering:

$$e_o(t) = \frac{1}{2}f(t)\cos[(\Delta\omega)t + \theta] \mp \frac{1}{2}\hat{f}(t)\sin[(\Delta\omega)t + \theta]$$

Phase error only (i.e. $\Delta \omega = 0$): $e_o(t) = \frac{1}{2} [f(t) \cos \theta \mp \hat{f}(t) \sin \theta]$

To understand this better we re-write the above equation as

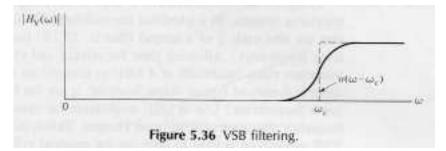
$$e_o(t) = \frac{1}{2} \mathbb{R}\{[f(t) \pm j\hat{f}(t)]e^{j\theta}]\}$$

 \Rightarrow So phase error in the receiver oscillator results in phase distortion.

Frequency error only (i.e. $\theta = 0$):

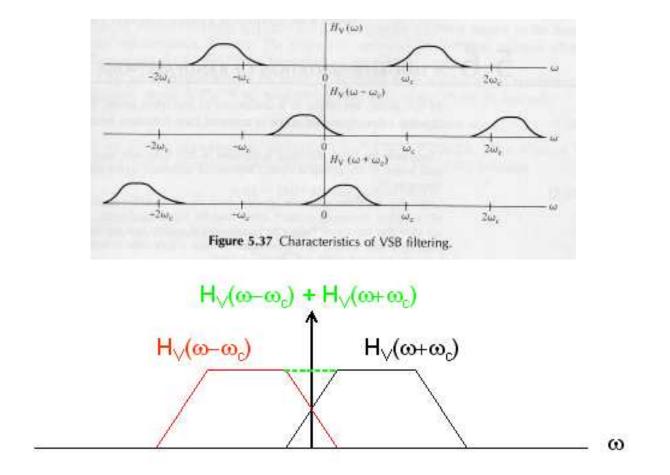
$$e_0(t) = \frac{1}{2} [f(t)\cos(\Delta\omega)t \mp \hat{f}(t)\sin(\Delta\omega)t]$$

or


$$e_o(t) = \frac{1}{2} \mathbb{R}\{[f(t) \pm j\hat{f}(t)]e^{j\Delta\omega t}\}$$

 \Rightarrow Demodulated signal contains spectral shifts and phase distortions.

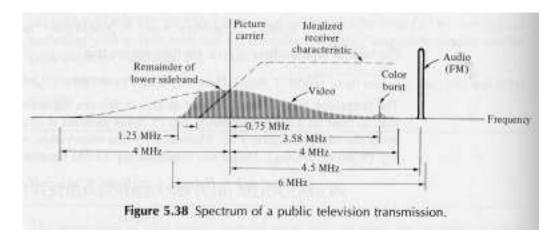
4.6 Vestigial-Sideband AM (VSB)


- compromise between DSB and SSB.
- partial suppression of one sideband

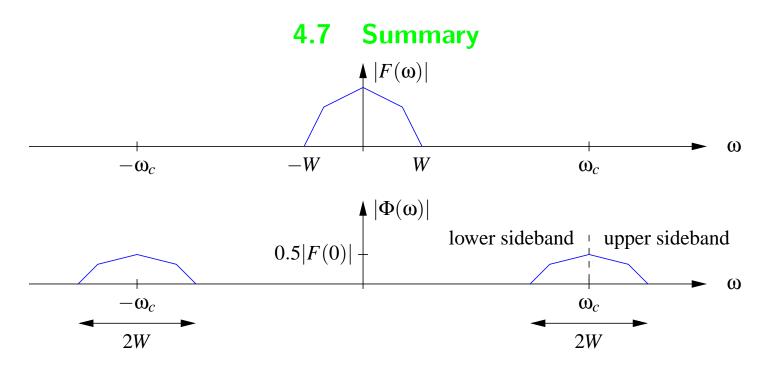
$$\Phi_{VSB}(\omega) = \left[\frac{1}{2}F(\omega - \omega_c) + \frac{1}{2}F(\omega + \omega_c)\right]H_V(\omega)$$

• after synchronous detection we have

$$E_o(\omega) = rac{1}{4}F(\omega)H_V(\omega+\omega_c) + rac{1}{4}F(\omega)H_V(\omega-\omega_c)$$
 $= rac{1}{4}F(\omega)[H_V(\omega+\omega_c) + H_V(\omega-\omega_c)]$

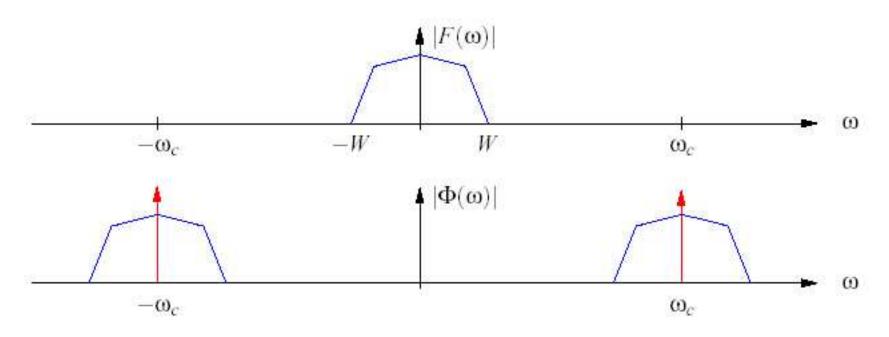


thus for reproduction of f(t) we require


$$[H_V(\omega - \omega_c) + H_V(\omega + \omega_c)]_{LP} = \text{constant}$$

- magnitude can be satisfied, but phase requirements are hard to satisfy
- use when phase is not important

4.6.1 Video Transmission in Commercial TV Systems

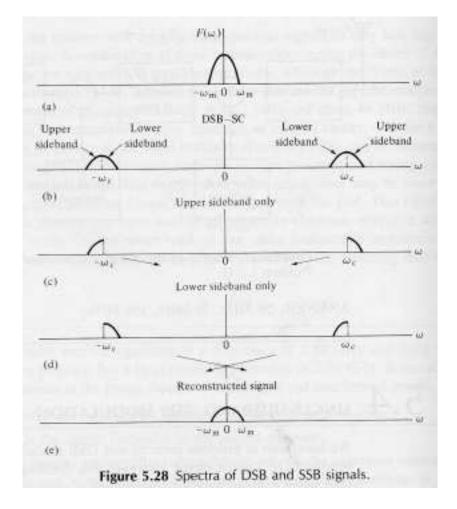


- $\bullet\,$ video requires 4MHz bandwidth to transmit
- so DSB would require 8MHz per channel
- use VSB to decrease the needed bandwidth to 5MHz

Double Sideband-Suppressed Carrier(DSB-SC)

- spectrum at ω_c is a copy of baseband spectrum with scaling factor of 1/2
- information is sidebands is redundant
- for coherent detection, we must have same frequency and phase of carrier signal
- detection can be done with pilot tone, PLL

Double Sideband-Large Carrier(DSB-LC)


- same as DSB-SC, with an addition of a carrier term
- detection is a simple envelope detector
- Wastes, at best case, 67% of the power in the carrier term
- frequency response at low-frequencies are ruined

Quadrature Amplitude Modulation(QAM)

• efficient utilization of bandwidth

• forms a complex signal with two sinusoidal carriers of same frequency, 90° out of phase

Single Sideband Modulation(SSB)

- suppress either upper or lower sideband for more efficient bandwidth utilization
- generated by filtering DSB-SC

- can also use phasing to cancel the "negative" frequencies
- can use either suppressed carrier, pilot tone, or large carrier AM also

Vestigial Sideband(VSB)

- compromises DSB and SSB
- transmitter and receiver filters must be complementary, i.e., they must add to a constant at baseband
- phase must not be important