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4.1 Introduction

Modulation: Process by which a property or a parameter of a signal is varied in proportion

to a second signal.

Amplitude Modulation: The amplitude of a sinusoidal signal with fixed frequency and

phase is varied in proportion to a given signal.

Purpose:

• Adaptation of the information signal to the transmission channel

• Shift of the information signal to an assigned frequency band
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• Efficient antenna design: size is at least 1/4th of signal wavelength

⇒ antennas for lowpass signals would be too large (f = 3 kHz, λ = 100, 000 m).
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• Simultaneous transmission of several information signals (e.g. radio broadcasting)
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4.2 Double-Sideband Suppressed Carrier AM (DSB-SC)

4.2.1 Modulation

f (t)

cos(ωct)

φ(t)

Generation of DSB-SC modulated signal:

φ(t) = f(t) cos(ωct)

φ(t): modulated transmit signal

f(t): modulating signal, real valued

cos(ωct): carrier signal, ωc: carrier frequency in rad/sec

Spectrum of DSB-SC modulated signal:

φ(t) = f(t) cos(ωct) ◦—• Φ(ω) =
1

2
F (ω − ωc) +

1

2
F (ω + ωc)
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• Carrier frequency has to be larger than twice the bandwidth ω ≥ 2W .

• Bandwidth of the modulated signal φ(t) is twice as large as the bandwidth of the

modulating signal f(t).

• No separate carrier is present in φ(t).

• Upper sideband: spectral content for positive frequencies above ωc.

Lower sideband: spectral content for positive frequencies below ωc.

• Information in upper and lower sideband are redundant since Φ(ωc+ω) = Φ∗(ωc−ω),

or equivalently: |Φ(ωc + ω)| = |Φ(ωc − ω)| and ∠Φ(ωc + ω) = −∠Φ(ωc − ω)
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4.2.2 Demodulation

2cos(ωct)

LP filter f̂ (t)

ωp > W
ωs < 2ωc−W

φ(t) = f (t)cos(ωct)

Before lowpass filtering:

φ(t) 2 cos(ωct) = 2f(t) cos
2
(ωct) = f(t) (1 + cos(2ωct))

F{φ(t) 2 cos(ωct)} = F (ω) +
1

2
F (ω − 2ωc) +

1

2
F (ω + 2ωc)

After lowpass filtering:

F̂ (ω) = F (ω)

W−W
ω

|F {2 f (t)cos2(ωct)}|

−2ωc

2W 2W
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2ωc

The oscillators at the transmitter and receiver have to be synchronized, i.e. the carrier

frequency ωc as well as the phase must be identical (coherent demodulation).

Dr. Tanja Karp 8



Influence of Frequency and Phase Offset:

The oscillator at the receiver has a constant phase offset of θ0 as well as a slightly different

carrier frequency of ωc + ∆ω when compared to the one at the transmitter.

LP filter f̂ (t)φ(t) = f (t)cos(ωct)

2cos((ωc +∆ω)t +θ0)

ωp > W
ωs < 2ωc−W

Before lowpass filtering:

φ(t) 2 cos((ωc + ∆ω)t + θ0) = 2f(t) cos(ωct) cos((ωc + ∆ω)t + θ0)

= f(t) cos((2ωc + ∆ω)t + θ0) + f(t) cos(∆ωt + θ0)

After lowpass filtering:

f̂(t) = f(t) cos(∆ωt + θ0)

=
1

2
f(t) exp(j∆ωt) exp(jθ) +

1

2
f(t) exp(−j∆ωt) exp(−jθ)

F̂ (ω) =
1

2
exp(jθ)F (ω −∆ω) +

1

2
exp(−jθ)F (ω + ∆ω)
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Phase error only (i.e. ∆ω = 0):

f̂(t) = f(t) cos(θ0) ◦—• F̂ (ω) = F (ω) cos(θ0)

⇒ The recovered signal is scaled by a constant. For θ0 = ±90◦ we have f̂(t) = 0.

Frequency error only (i.e. θ0 = 0):

f̂(t) = f(t) cos(∆ωt) ◦—• F̂ (ω) =
1

2
F (ω −∆ω) +

1

2
F (ω + ∆ω)

⇒ The recovered signal is still modulated by a cosine signal of low frequency ∆ω.
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Pilot Carrier

• send a sinusoidal tone whose frequency and phase is proportional to ωc

• sent outside the passband of the modulate signal

• Receiver detects the tone, translates to correct frequency(doubling) and demodulates
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Example - Commercial Stereo FM Stations

Transmitter

• need to transmit left(L) and right(R) as well as (L+R) for monophonic

• (L+R) occupies 0− 15kHz

• so does (L-R), so shift up using DSB-SC with ωc = 38kHz

• place pilot tone at 19kHz
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Receiver

• narrow bandpass filter at 19kHz and then double to 38kHz

• after demodulation using pilot tone, we have

Left channel = (L + R) + (L− R) = 2L

Right channel = (L + R)− (L− R) = 2R
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Phase Locked Loop(PLL)

• Pilot Tone Problem -BP filters drift in tuning, bad at rejecting noise

• Solution: Phase Locked Loop(PLL)

• Operation when Voltage Controlled Oscillator(VCO) frequency(ωV CO) is close to ωc

– low-frequency component of output is proportional to magnitude and sign of phase

difference

– this voltage adjusts ωV CO to keep phase difference a minimum

• Bandwidth of PLL determined by LPF

– Small BW ⇒ good noise rejection but receiver may never lock

– Large BW ⇒ good lock but bad noise rejection
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4.3 Double-Sideband Large Carrier AM

4.3.1 Modulation

• Reduces complexity of receiver

• Since this type of AM is used in commercial broadcast stations, usually termed AM

• Similar to DSB-SC, except that we incorporate the carrier

– carrier must be larger than the rest of the signal

– ruins low-frequency response of the system, so must not require frequency response

down to 0.

φAM = f(t) cos(ωct) + A cos(ωct)

ΦAM(ω) =
1

2
F (ω + ωc) +

1

2
F (ω − ωc) + πAδ(ω + ωc) + πAδ(ω − ωc)
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• if A is large enough signal recovery is done with envelope detection

[A + f(t)] ≥ 0 for all t
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• Let f(t) = cos(ωmt), we define m to control the amount of modulation

m =
peak DSB-SC amplitude

peak carrier amplitude

φ(t) = A cos(ωct) + mA cos(ωmt) cos(ωct)

= A[1 + m cos(ωmt)] cos(ωct)

• percentage of modulation for DSB-LC signal with sinusoidal modulation

%mod =
A(1 + m)− A(1−m)

A(1 + m) + A(1−m)
× 100% = m× 100%

• we call m the modulation index

• in order to detect the signal with no distortion we require m ≤ 1
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4.3.2 Carrier and Sideband Power in AM

• carrier provides no information so it is just wasted power

• for an AM signal φAM(t) = A cos(ωct) + f(t) cos(ωct) the power is

φ2
AM(t) = A

2
cos2(ωct) + f2(t) cos2(ωct) + 2Af(t) cos2(ωct)

= A
2
cos2(ωct) + f2(t) cos2(ωct)

= A
2
/2 + f2(t)/2

• so we can express the total power as,

Pt = Pc + Ps =
1

2
A

2
+

1

2
f2(t)

so that the fraction of the total power contained in the sidebands is

µ =
Ps

Pt

=
f2(t)

A2 + f2(t)
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• so when f(t) = cos(ωmt) we get

φ2
AM(t) =

1

2
A

2
+ (

1

2
)(

1

2
)m

2
A

2

µ =
m2

2 + m2

• so for best case, i.e., m = 1, 67% of the total power is wasted with the carrier

4.3.3 Demodulation

• the price we pay for wasted power is a tradeoff for simple receiver design

• receiver is simply an envelope detector
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4.4 Quadrature AM (IQ)

|Φ(ω)|
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• for real signal f(t), F (ω) = F ∗(−ω)

• using this symmetry we can transmit two signals that form a complex signal with same

bandwidth

• we use two sinusoidal carriers, each exactly 90◦ out of phase

remember, ejωt = cos(ωt) + j sin(ωt)

• transmitted over the same frequency band,
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φ(t) = f(t) cos(ωct) + g(t) sin(ωct)

φ(t) · cos(ωct) = f(t) cos
2
(ωct) + g(t) sin(ωct) cos(ωct)

=
1

2
f(t) +

1

2
f(t) cos(2ωct) +

1

2
f(t) sin(2ωct)

φ(t) · sin(ωct) = f(t) cos(ωct) sin(ωct) + g(t) sin
2
(ωct)

=
1

2
f(t) sin(2ωct) +

1

2
g(t)− 1

2
cos(2ωct)
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4.5 Single-Sideband AM (SSB)

• remember for real f(t), F (−ω) = F ∗(ω)

• a single sideband contains entire information of the signal

• let’s just transmit the upper/lower sideband.
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4.5.1 Modulation

• one way is to generate DSB signal, and then suppress one sideband with filtering

• hard to do in practice, can’t get ideal filters

• assume no low-frequency information ⇒ no components around ωc

• use heterodyning(frequency shifting), only need to design on sideband filter

• another way is the use of phasing

• assume a complex, single-frequency signal, f(t) = ejωmt with carrier signal f(t) =

ejωct

• multiplying we get φ(t) = f(t)ejωct = ejωmtejωct

• using the frequency-translation property of the Fourier Transform, our spectrum be-

comes

Φ(ω) = 2πδ(ω − (ωc + ωm))
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• to make the signal φ(t) realizable, we take the R{φ(t)}
R{φ(t)} = R{ejωmt}R{ejωct} − I{ejωmt}I{ejωct}

= cos(ωmt) cos(ωct)− sin(ωmt) sin(ωct)

• So the upper side band is

φSSB+(t) = cos(ωmt) cos(ωct)− sin(ωmt) sin(ωct)
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• likewise the lower sideband is

φSSB−(t) = cos(ωmt) cos(ωct) + sin(ωmt) sin(ωct)

• in general we write,

φSSB∓(t) = f(t) cos(ωct) ± f̂(t) sin(ωct)

where f̂(t) is f(t) shifted by 90◦
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4.5.2 Demodulation

Synchronous detection, analogous to DSB-SC

Influence of Frequency and Phase Offset:

The oscillator at the receiver has a constant phase offset of θ as well as a slightly different

carrier frequency offset of ∆ω giving

φd(t) = cos[(ωc + ∆ω)t + θ]
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Before lowpass filtering:

φSSB∓(t)φd(t) = [f(t) cos(ωct)± f̂(t) sin(ωct)] cos[(ωc + ∆ω)t + θ]

=
1

2
f(t){cos[(∆ω)t + θ] + cos[(2ωc + ∆ω)t + θ]}

= ±1

2
f̂(t){sin[(∆ω)t + θ]− sin[(2ωc + ∆ω)t + θ]}

After lowpass filtering:

eo(t) =
1

2
f(t) cos[(∆ω)t + θ] ∓ 1

2
f̂(t) sin[(∆ω)t + θ]

Phase error only (i.e. ∆ω = 0):

eo(t) =
1

2
[f(t) cos θ ∓ f̂(t) sin θ]

To understand this better we re-write the above equation as

eo(t) =
1

2
R{[f(t) ± jf̂(t)]e

jθ
]}

⇒ So phase error in the receiver oscillator results in phase distortion.
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Frequency error only (i.e. θ = 0):

e0(t) =
1

2
[f(t) cos(∆ω)t ∓ f̂(t) sin(∆ω)t]

or

eo(t) =
1

2
R{[f(t) ± jf̂(t)]e

j∆ωt}

⇒ Demodulated signal contains spectral shifts and phase distortions.
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4.6 Vestigial-Sideband AM (VSB)

• compromise between DSB and SSB.

• partial suppression of one sideband

ΦV SB(ω) = [
1

2
F (ω − ωc) +

1

2
F (ω + ωc)]HV (ω)

• after synchronous detection we have

Eo(ω) =
1

4
F (ω)HV (ω + ωc) +

1

4
F (ω)HV (ω − ωc)

=
1

4
F (ω)[HV (ω + ωc) + HV (ω − ωc)]
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thus for reproduction of f(t) we require

[HV (ω − ωc) + HV (ω + ωc)]LP = constant

• magnitude can be satisfied, but phase requirements are hard to satisfy

• use when phase is not important
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4.6.1 Video Transmission in Commercial TV Systems

• video requires 4MHz bandwidth to transmit

• so DSB would require 8MHz per channel

• use VSB to decrease the needed bandwidth to 5MHz
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4.7 Summary
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Double Sideband-Suppressed Carrier(DSB-SC)

• spectrum at ωc is a copy of baseband spectrum with scaling factor of 1/2

• information is sidebands is redundant

• for coherent detection, we must have same frequency and phase of carrier signal

• detection can be done with pilot tone, PLL

Dr. Tanja Karp 32



Double Sideband-Large Carrier(DSB-LC)

• same as DSB-SC, with an addition of a carrier term

• detection is a simple envelope detector

• Wastes, at best case, 67% of the power in the carrier term

• frequency response at low-frequencies are ruined

Quadrature Amplitude Modulation(QAM)

• efficient utilization of bandwidth

Dr. Tanja Karp 33



• forms a complex signal with two sinusoidal carriers of same frequency, 90◦ out of phase

Single Sideband Modulation(SSB)

• suppress either upper or lower sideband for more efficient bandwidth utilization

• generated by filtering DSB-SC
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• can also use phasing to cancel the “negative” frequencies

• can use either suppressed carrier, pilot tone, or large carrier AM also

Vestigial Sideband(VSB)

• compromises DSB and SSB

• transmitter and receiver filters must be complementary, i.e., they must add to a constant

at baseband

• phase must not be important
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